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Crystallization of Random Trigonometric Polynomials
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We give a precise measure of the rate at which repeated differentiation of a random
trigonometric polynomial causes the roots of the function to approach equal spacing.
This can be viewed as a toy model of crystallization in one dimension. In particular
we determine the asymptotics of the distribution of the roots around the crystalline
configuration and find that the distribution is not Gaussian.
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1. INTRODUCTION

The critical points of an analytic function have a variety of interesting physical
interpretations. For polynomials we have the Gauss electrostatic model: at each
zero of the polynomial f (z) place identical point charges obeying an inverse linear
law. Then the zeros of the derivative f ′(z) are the points where the field vanishes.
To see why this works, just write f (z) in factored form and consider the logarithmic
derivative f ′(z)/ f (z).

The Gauss model extends to entire functions of order 1, provided one incor-
porates a background field coming from the exponential factors of the Hadamard
factorization of the function. For such functions there is a general phenomenon
that differentiation smooths out irregularities in the distribution of zeros. See ref. 6
for details. If the zeros are located in a strip around the real axis and their initial
distribution is not too irregular, then repeated differentiation leads the zeros to
approach equal spacing. This regular spacing is known as the crystalline config-
uration(2) and we view the process of repeated differentiation as a toy model of
crystallization in one dimension. According to the Gauss model,regular spacing is
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Fig. 1. An example degree 30 trigonometric polynomial, along with its 1st, 3rd, and 10th derivative.

the minimum energy configuration and differentiation moves the function toward
the minimum energy configuration. See Fig. 1 for an illustration.

We now describe the functions we study and then discuss our results.
A random trigonometric polynomial of degree N is a function of the form

F(x) =
N∑

n=0

an cos(nx) + bn sin(nx) (1)

where an and bn are random variables. In this paper we will assume that the an

and bn are independent real Gaussian distributed with mean 0 and variance σ 2
n ,

and usually we further assume that the variances σ 2
n are all equal.

Our concern is with the properties of the real zeros of F(x). Generally F(x)
will not have all of its zeros real, but the high derivatives of F(x) will have mostly
real zeros, and those zeros will be close to equally spaced. This can be seen in
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Fig. 1. This is a general property(6) of real entire functions of order 1, but in the
case of trigonometric polynomials this is easy to see. The pth derivative of F(x) is

F (p)(x) =
N∑

n=1

ann p cos(nx) + bnn p sin(nx),

where for simplicity we have assumed p is a multiple of 4. For large p the terms
aN N p cos(N x) + bN N p sin(N x) dominate. So the zeros of F (p)(x) are close to
the zeros of aN cos(N x) + bN sin(N x) = cN cos(N x + φN ) for some real cN and
φN , and those zeros are real and equally spaced.

Another general property of repeated differentiation of real entire functions
of order 1 is that the discrepancy from equal spacing of zeros of the pth derivative
scales as O(1/p). See Theorem 2.4.2 of ref. 6. In the case of random trigonometric
polynomials we are able to obtain more precise information. We describe this in
the next section.

2. STATEMENT OF RESULTS

In this section F(x) is a random trigonometric polynomial of the form (1) for
which the ak and bk are independent Gaussian distributed random variables with
mean 0 and identical variance. We wish to measure the rate at which the real zeros
of the pth derivative F (p)(x) approach equal spacing as p → ∞. We consider the
pair correlation function of the real zeros of F (p)(x), defined as

R2,p(τ ) = 〈ρp(x)ρp(x + τ )〉, (2)

where

ρp(x) =
∑

xk :F (p)(xk )=0

δ(x − xk) = δ
(
F (p)(x)

)∣∣F (p+1)(x)
∣∣. (3)

Here δ is the Dirac δ-function at 0, and 〈·〉 stands for expected value. Thus, ρp

is the density function of real zeros of F (p), and R2,p is the density function of
differences of real zeros.

Since R2,p measures the differences between zeros, if the zeros are almost
regularly spaced then R2,p(x) will be large when x is close to a multiple of the
average zero spacing and it will be small otherwise. In other words, we expect that
R2,p should approach a sum of δ-functions at the integers as p → ∞. Bogomolny,
Bohigas, and Lebœuf (2) obtain a general expression for the pair correlation func-
tion of the real zeros of a random trigonometric polynomial. From their results
(which we describe in Section 4) we obtain a formula for R2,p, which we plot for
p = 0, 1, 3, 10 in Fig. 2. Note that the p = 0 case is from(2).

The plots in Fig. 2 use the following normalization. We rescale the polynomial
so that the average spacing between zeros is 1, that is, we are actually considering
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Fig. 2. Plots of R2,p(x), the pair correlation function of the real zeros of the pth derivative F (p)(x),
for p = 0, 1 (top row) and p = 3, 10 (bottom row).

the function F (p)(πx/N ). As we describe in Section 3, as N → ∞ the function
F (p) has the expected fraction

vp =
√

2p + 1

2p + 3
∼ 1 − 1

2p
(4)

of real zeros. So 1/vp is the average gap between consecutive real zeros, and that
is the spacing between the peaks in the pair correlation functions in Fig. 2. Note
that vp is also the density of real zeros. So the pair correlation function R2,p(x)
will equal v2

p on average, which can also be seen in Fig. 2.
We give an asymptotic formula for the pair correlation function R2,p(x)

as p → ∞. As in the general case(6) we find a O(1/p) discrepancy from equal
spacing, and furthermore we find that the nearest-neighbor spacing has (appropri-
ately rescaled) distribution function

1

(1 + 4x2)
3
2

, (5)

centered at 1 + 1
2p . In particular, the discrepancy from equal spacing is not

Gaussian. The precise statement is

Theorem 2.1. As p → ∞, the pair correlation function R2,p(x) of the real
zeros of F (p) approaches a sum of Dirac δ-functions at the nonzero integers. The
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δ-function near the positive integer n is given by

R2,p

(
n

(
1 + 1

2p
+ u

p

))
= p

n

1

(1 + 4u2)
3
2

+ O(1), (6)

as p → ∞.

The proof is given in Section 4.1. Note that the total area under 1/(1 + 4u2)
3
2

is 1, which shows that the above Theorem does in fact identify the δ-function near
the integer n.

Since the zeros of F (p) are close to equally spaced, the peak of R2,p(x)
near x = 1 is almost completely due to nearest-neighbor spacings. Thus, we can
read the nearest-neighbor distribution from the pair-correlation function, as given
in (5). In fact, we can also read off the next-nearest neighbor spacing (and all
of the other neighbor spacings), as p → ∞, from the pair correlation function.
Up to rescaling, all of those distributions are the same. This shows that there are
long-term correlations between the zeros, otherwise, for example, the next-nearest
neighbor distribution would be the convolution of the nearest neighbor distribution
with itself.

One motivation for this work is to understand, in general, the effect of differ-
entiation on the statistics of zeros for functions which have all their zeros on a line.
In particular, we would like to understand the effect of differentiation on the repul-
sion between zeros. For example, if f (x) has only real zeros and the zeros have the
same statistics as the eigenvalues of the classical random matrix β-ensemble, then
the zeros of f (x) have repulsion of order β. For the derivative f ′(x), it is reasonable
to conjecture that the zeros would have repulsion of order 3β + 1, because pairs of
close zeros of f ′(x) occur when f (x) has three closely spaced zeros. This topic is
of interest to number theory.(5)Unfortunately, the calculations in this paper do not
shed light on this phenomenon because the zeros of random trigonometric polyno-
mials are not in general all on the real line. We find that all derivatives of a random
trigonometric polynomial have linear repulsion between zeros, and show that this
is due to the fact that each derivative moves new zeros onto the real line, and those
new zeros show linear repulsion from each other. See Section 4.2. Thus, the ap-
proach of the pair-correlation function to a sum of δ-functions is a very general phe-
nomenon, but the particular form that we find is specific to random trigonometric
polynomials.

In the next section we discuss generalities about random trigonometric poly-
nomials. In Section 4 we discuss the asymptotics of the pair correlation of
the zeros of F (p), and in Section 4.2 we compute the repulsion between the
zeros.
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3. RANDOM TRIGONOMETRIC POLYNOMIALS

We assume that F(x) is a random trigonometric polynomial of the form (1),
where the ak and bk are independent real normally distributed random variables
with mean 0 and identical variance σ 2.

The expected fraction, vp, of real zeros of F (p)(x) is given in (4). This result
is due to Dunnage.(3) It follows directly from the Kac-Rice formula, which we give
in Lemma 3.1.

Note that the original polynomial F(x) has on average 1/
√

3 ≈ 57.7% real
zeros, the 4th derivative has more than 90% of its zeros real, and one must take
49 derivatives in order to expect 99% real zeros. Note that these are asymptotic
results, and one can obtain exact formulas for any N . For example, the N = 30,
p = 10 example at the bottom of Fig. 1 expects to have 96.96% real zeros, and
this is approximately 1.4% larger than the asymptotic estimate (4).

We now derive (4).

Lemma 3.1. (The Kac-Rice Formula(7,8)) Suppose F(x) is a random trigono-
metric polynomial with independent real normally distributed coefficients having
mean 0 but not necessarily equal variance, and let

A2 = Var (F(x)) = 〈F(x)2〉
B2 = Var (F ′(x)) = 〈F ′(x)2〉
C = Cov (F(x)F ′(x)) = 〈F(x)F ′(x)〉
�2 = A2 B2 − C2.

Then the expected number of real roots of F(x) in the interval (a, b) is

1

π

∫ b

a

�

A2
dx .

In the case of F(x) of the form (1) we have

A2 =
N∑

n=0

σ 2
n

B2 =
N∑

n=0

n2σ 2
n

C = 0.

If all the coefficients of F(x) have equal variance σ 2, then the pth derivative
F (p)(x) can be viewed as a random trigonometric polynomial of the form (1) where
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the coefficients an and bn have variance n2pσ 2. So for the pth derivative we have

A = σ 2
N∑

n=0

n2p ∼ σ 2 N 2p+1

2p + 1
(7)

and

B = σ 2
N∑

n=0

n2p+2 ∼ σ 2 N 2p+3

2p + 3
, (8)

as N → ∞. From this, formula (4) for the fraction of real roots vp follows
immediately.

4. PAIR CORRELATION OF THE REAL ROOTS

We use a result of Bogomolny, Bohigas, and Lebœuf(2) to compute the pair
correlation function R2,p of the real zeros of F (p)(x).

Lemma 4.1. (Appendix B of ref (2)) . Suppose

F(x) =
N∑

n=0

an cos(nx) + bn sin(nx)

is a random trigonometric polynomial, where the an and bn are independent real
Gaussian distributed random variables with mean 0 and variance σ 2

n . The expected
value of the pair correlation function R2(τ ) of the real zeros of F(x) is given by

R2(τ ) = 1

π2C
3
2

(B arcsin(B/A) +
√

A2 − B2), (9)

where
A = g2C − g1g2

4

B = g5C − g3g2
4 (10)

C = g2
1 − g2

3,

with

g1 =
N∑

n=1

σ 2
n

g2 =
N∑

n=1

n2σ 2
n

g3 =
N∑

n=1

σ 2
n cos(nτ )
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g4 =
N∑

n=1

nσ 2
n sin(nτ ) (11)

g5 =
N∑

n=1

n2σ 2
n cos(nτ ).

We apply the Lemma to F (p)(x) with σn = n p. So we have

g1 ∼ N 2p+1

2p + 1
and g2 ∼ N 2p+3

2p + 3
, (12)

as N → ∞. To determine asymptotics for g3, g4 and g5, we use the fact that for
continuous functions f

∫ 1

0
f (x)dx = lim

N→∞
1

N

N∑

n=0

f
( n

N

)
.

We change variables τ = πx/N , so in the variable x the mean spacing between
zeros of F is unity. We have

g3 ∼ N 2p+1
∫ 1

0
cos (πxt) t2pdt

g4 ∼ N 2p+2
∫ 1

0
sin (πxt) t2p+1dt (13)

g5 ∼ N 2p+3
∫ 1

0
cos (πxt) t2p+2dt.

We let R2,p(x) denote the pair correlation function of the real zeros of the
pth derivative F (p)(x), where F(x) is given by (1) with all a j and b j independent
identical Gaussian, and we normalize by dividing by the square of the overall zero
density N 2/π2. As N → ∞ we have

R2,p(x) ∼ 1

C
3
2
p

(
Bp arcsin(Bp/Ap) +

√
A2

p − B2
p

)
, (14)

where

Ap = g2,pC p − g1,pg2
4,p

Bp = g5,pC p − g3,pg2
4,p (15)

C p = g2
1,p − g2

3,p,



Crystallization of Random Trigonometric Polynomials 1227

with

g1,p = 1

2p + 1

g2,p = 1

2p + 3

g3,p =
∫ 1

0
cos (πxt) t2pdt (16)

g4,p =
∫ 1

0
sin (πxt) t2p+1dt

g5,p =
∫ 1

0
cos (πxt) t2p+2dt.

Plots of R2,p for p = 0, 1, 3, 10 are given in Fig. 2.

4.1. Large p Asymptotics of the Pair Correlation

We determine the rate at which R2,p(x), appropriately rescaled, approaches
a sum of δ-functions at the integers.

We first find asymptotic formulas for Ap, Bp, and C p. Using a geometric
series expansion for g1,p and g2,p, and using integration by parts followed by a
geometric series expansion for g3,p, g4,p, and g5,p, we find (with the help of a
computer algebra package), that

Ap = 1

64
(−2π2x2 − 2 sin(2πx)πx + (4π2x2 − 1) cos(2πx) + 1)p−5 + O(p−6)

Bp = 1

128
(cos(πx) + (4π2x2 − 1) cos(3πx) − 8πx sin(πx))p−5 + O(p−6)

C p = 1

4
sin2(πx) p−2 − 1

4
((πx cos(πx) + sin(πx)) sin(πx))p−3 (17)

+ 1

32
(π2x2 + 8 sin(2πx)πx + 3(π2x2 − 1) cos(2πx) + 3)p−4 + O(p−5)

We see that Ap and Bp are generally of size p−5, while C3/2
p is generally of

size p−3. But for x ∈ Z we see that C3/2
p is of size p−6. Thus, as p → ∞, if x ∈ Z

then Rp(x) → ∞, otherwise Rp(x) → 0. This is exactly what one should expect
because Rp is approaching a sum of δ-functions at the integers. We now express
this more precisely.

The minima of C p are not exactly at the integers, but they are shifted over to
approximately n(1 + 1

2p ) for n ∈ Z. This is also what one would expect because
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the mean spacing of the real zeros of F (p) is approximately 1/vp ∼ 1 + 1
2p . We

will verify this directly from the above formulas. Differentiating C p with respect
to x we have

C ′
p(x) = − 1

16
(π ((4p − 11)π cos(2πx)x − πx

+(−4p2 + 6p + 3π2x2 − 7) sin(2πx)))p−4. (18)

We are thinking of x as fixed and p large, so the minimum of C p is close to the
solution to

4πpx cos(2πx) − 4p2 sin(2πx) = 0, (19)

which is equivalent to

tan(2πx) = πx

p
. (20)

The solutions with x near an integer correspond to the minima of C p, so writing
x = n + ξ and tan(2πx) ∼ 2πξ , we find

ξ ∼ n

2p
, therefore x ∼ n

(
1 + 1

2p

)
, (21)

as expected.
To show the shape of the δ-functions, we expand near the minima of C p. For

positive integers n we find that

C p

(
n

(
1 + 1

2p
+ u

p

))
= π2

16
(1 + 4u2)n2 p−4 + O(p−5). (22)

Also,

Ap

(
n

(
1 + 1

2p
+ u

p

))
= π2

32
n2 p−5 + O(p−7)

Bp

(
n

(
1 + 1

2p
+ u

p

))
= cos(πn)

π2

32
n2 p−5 + O(p−7). (23)

Thus, arcsin(Bp/Ap) = (−1)nπ/2 + O(p−2), so we obtain Theorem 2.1.

4.2. Repulsion Between Zeros

In ref. 2 it was found the the real zeros of F(x) have linear repulsion. We find
that the real zeros of F (p)(x) also show linear repulsion.
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Fig. 3. Functions with zeros at 1
2 ± ia and at the integers except for 0, 1. On the left a = 0.92, and on

the right a = 1.1. Dotted curve shows the derivative.

Computing the small x asymptotics of (16) we find that

R2,p(x) = π2
√

4p2 + 8p + 3

2(2p + 3)2(2p + 5)
x

+ π2(4p2 + 8p + 3)3/2

(2p + 1)(2p + 3)2
√

(2p + 5)3(2p + 7)
x2 + O(x3)

∼ π2

8p2
x, (24)

as p → ∞. So for every derivative we have linear repulsion between zeros. This
appears to contradict the expectation that differentiation increases the repulsion
between zeros. However, there is a simple explanation. Each derivative causes
more zeros to fall onto the real line. These “new” zeros can be closely spaced, as
illustrated in Fig. 3.

In Fig. 3, all of the zeros are spaced one unit apart, except for two zeros
which have been moved to have imaginary part ±a and real part the midpoint of
the resulting gap. In the left plot we have a = 0.92 and in the right plot a = 1.1.
Moving the complex zeros to have imaginary part

± 2

π2 − 8
≈ ±1.06975 (25)

gives a triple zero of the derivative, so values slightly less than this give closely
spaced zeros.

Since the fraction of new real zeros for the pth derivative is

vp − vp−1 =
√

2p + 1

2p + 3
−

√
2p − 1

2p + 1
∼ 1

2p2
, (26)

which is of the same magnitude as the linear repulsion, we see that the new zeros
lead to repulsion of magnitude x/p2. It seems reasonable to believe that this
accounts for all of the linear repulsion, but we have not been able to verify this.
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